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Outline

� Introduce interlaboratory studies, with mo-

tivation and examples.

� Review work of W.J. Youden and John Man-

del, which has had a substantial inuence

on practice.

{ Youden plots

{ Row-Linear Models

� Present some recent research, focusing mostly

on the heteroscedastic one-way random model.

{ Mandel-Paule procedure as approximate

REML.

{ ML and pro�le likelihood analysis.

{ Bayesian inference.



Interlaboratory Studies:

The Scenario

� Each of p laboratories makes repeated mea-

surements of m quantities (perhaps corre-

sponding to di�erent concentrations of a

chemical analyte).

� The number of measurements made can

di�er among the laboratories.

� The measurement variability may depend

on the material being measured (perhaps

as an increasing function of concentration

or level).

� The within-laboratory variabilities may dif-

fer (often, though, they are assumed to be

equal).



Interlaboratory Studies:

Some questions

� How should one estimate `consensus' val-

ues of the quantities measured?

� What is the between-laboratory variability

(reproducibility)?

� What is the within-laboratory variability (re-

peatability)? How do they compare?

� How should we look for outliers?



Why Interlaboratory Studies?

� Interlaboratory studies are primarily performed

for one of two reasons:

1. Validating a measurement method or

standard material

2. Assessing the pro�ciency of

measurement laboratories.



Examples of Both Types of Studies

� An enzymatic-gravimetric method is devel-

oped for measuring the dietary �ber in foods.

Standardized samples of foods are prepared,

and distributed to various testing laborato-

ries, who measure the concentrations using

the proposed method.

� The National Research Council of Canada

and NOAA together conduct interlabora-

tory comparisons to evaluate the pro�ciency

of test laboratories at determining concen-

trations of trace elements in marine biolog-

ical tissues. Homogeneous materials (e.g.

oyster tissue, marine sediments) are dis-

tributed among various laboratories, who

return data on several trace elements (e.g.,

arsenic).



Evaluating an Analytical Method for

Dietary Fiber

Li and Cardozo (1994)

J. Of AOAC Int., 77, p. 689

Nine labs each measures �ber in six foods, in

blind duplicates.

Sample Laboratory

1 2 � � � 9
Apples 12.44 12.87 � � � 12.08

12.48 13.20 � � � 12.38
Apricots 25.05 27.16 � � � 25.31

25.58 26.29 � � � 25.43
... ... ... � � � ...
FIBRIM 74.07 76.55 � � � 73.96

75.01 78.36 � � � 74.24



Unequal Variances for Fiber Data



Arsenic in Oyster Tissue

(NIST Standard Reference Material

1566a)



Interlaboratory Study

Methodology at NBS

W.J. Youden (1948-1972)

� W.J. Youden A chemist with statistical

training, Youden was very active in the As-

sociation of O�cial Analytical Chemists.

He wrote a manual of procedures to be

used by members of this association, in

which he introduced the inuential concept

of the Youden Plot.



Interlaboratory Study

Methodology at NBS

John Mandel (1948- )

� John Mandel Also a chemist with sta-

tistical training, Mandel's career has been

devoted to work in interlaboratory stud-

ies, and to understanding measurement as

a process. His most inuential contribu-

tions center on the Row-Linear Model for

two-way tables in interlaboratory studies,

and on a novel approach to single material

studies. He has long been an inuential

member of the American Society for Test-

ing and Materials.



The Youden Plot

� Prepare a material in pairs of blocks. Each

block is as homogeneous as possible, and is

divided into samples, with one sample sent

to each laboratory.

� The blocks need not be identical, but should

be close in the mean level of the quantity

being measured, so that the measurement

variances can be assumed to be equal.

� Several pairs of blocks can be used to cover

a wide range of concentrations.



Youden Plot: Linear Model

� Let the data from a pair of blocks be xij,

i= 1;2 and j = 1; : : : ; p.

� We assume that

xij = �i+ bj + eij

(i = 1;2: Samples; j = 1; : : : ; p: Labs)

� Laboratory e�ect: bj, di�erent for each

lab, normal with mean 0 and variance �2b .

� Measurement errors: eij, assumed to iden-

tically distributed normal with mean 0 and

common variance �2e .

� Plot the x1js against the x2js. A circular

pattern indicates no laboratory e�ect; an

ellipse indicates a laboratory e�ect.

� Outlying labs can be

qualitatively determined.



Statistical Inference

� Points (x1j; x2j) equicorrelated normal with mean
(�1; �2).

� Contours of bivariate distribution are elliptical, with
semimajor axis

a /
q
2�2b + �2e

and semiminor axis

b / �e

� Variance component estimates follow from the in-
dependent sample variances

Var

�
x1j + x2jp

2

�
� (2�2b + �2e )�

2

p�1

Var

�
x1j � x2jp

2

�
� �2e�

2

p�1

� The ratio of these estimates is the F-ratio for test-
ing �2b = 0.

� Con�dence and prediction regions are strightfor-
ward to calculate.



Youden Plot for Pro�ciency Study:

Arsenic in Marine Tissue















Two-Way Tables

� The typical data structure for an interlab-

oratory study is a two-way table, although

sometimes (as above) the data are ana-

lyzed one material at a time.

� One way to model such data is a two-way

ANOVA with interaction:

yijk = �+ �i+ �j + ij + �ijk

where

{ �i, i = 1; : : : ; p is the laboratory e�ect

(perhaps random)

{ �j, j = 1; : : : ;m is the material e�ect

(�xed)

{ ij is the lab/material interaction

{ eijk, k = 1; : : : ; nij is the measurement

error, with variance which probably

depends on material.



Mandel's Approach to Two-Way Tables

� Typically, one sees unequal error variances

for di�erent materials, and often nonaddi-

tivity as well.

� Transforming the data can help, but Man-

del argues that this is not appropriate since

there are multiple variances in the model.

� Mandel's approach consists of

1. Estimating the within variance separately

for each material, and then reducing the

data to cell means.

2. Estimating the row e�ects, column ef-

fects, and interaction.

3. Regressing the estimated interaction against

the column (material) e�ects. This re-

sults in a decomposition of the interac-

tion into a part due to slopes among

labs, and a residual.



Calculations for the Row-Linear Model

� Error variances:

s2j =

Pp
i=1

Pnij

k=1
(yijk � �y:j:)2Pp

i=1(nij � 1)

� E�ects:

�̂ = �y:::
�̂i = �yi:: � �y:::
�̂j = �y:j: � �y:::
̂ij = �yij: � �̂� �̂i � �̂j

(1)

� Row-linear model for interaction:

̂ij = bi�̂j + hij

where bi is the least-squares slope for the ith lab.,
and hij is the part of the interaction not explained
by the linear regression.



Laboratory Linear Regressions

for the Fiber Data

� If we do these linear regressions for the

�ber data, we �nd some very signi�cant

slopes. But also some insigni�cant ones.

� The signi�cant slopes are strongly inu-

enced by the Fibrim data.

Lab. b̂i sb̂i
b̂i=sb̂i

P-Value

1 -0.0256 0.0075 -3.4129 0.0270
2 0.0140 0.0044 3.1827 0.0334
3 0.0123 0.0207 0.5940 0.5845
4 -0.0095 0.0115 -0.8274 0.4545
5 -0.0005 0.0058 -0.0814 0.9391
6 -0.0504 0.0137 -3.6760 0.0213
7 0.0686 0.0064 10.7495 0.0004
8 0.0183 0.0120 1.5239 0.2022
9 -0.0272 0.0041 -6.5961 0.0027



The Row-Linear ANOVA Table

We can write Mandel's model as:

�yij: = �yi::+ (bi+1)(�y:j: � �y:::) + hij

Some refer to this as Mandel's `bundle-of-lines'.

The ANOVA table is

Rows p� 1 m
P

i(�yi:: � �y:::)2

Columns m� 1 p
P

j(�y:j: � �y:::)2

Interaction (p� 1)(m� 1)
P

ij(yij � �yi:: � �y:j: + �y)2

Slopes p� 1
P

ij b
2

i (�y:j: � �y:::)2

Remainder (p� 1)(m� 2)
P

ij h
2

ij



Row-Linear ANOVA Table for Dietary

Fiber Data

Source SS df F-Ratio

Labs. 64.48 8 23.08
Foods 12447871.91 5 7127822.96
Interaction 36.04 40 2.58
Slopes 24.86 8 8.90
Resid. 11.18 32

P-Value for Slopes: 2.5�10�6



Single-Material Interlaboratory Model:

One-Way, Unbalanced, Heteroscedastic

Random-E�ects ANOVA

� Laboratory sample means �xi: distributed in-

dependently normal with mean � and vari-

ance �2+ �2i , where �
2
i = �2i =ni.

� Expected mean for ith laboratory is also

normal, with mean � and variance �2.

� Su�cient statistics �xi: and t2i = s2i =ni.

If xij denotes the jth measurement from the

ith lab, then

xij = �+ bi+ eij;

where bi � N(0; �2) and eij = N(0; �2i ); mutu-

ally independent.



One-Way Models in
Interlaboratory Studies:

The Mandel-Paule Estimator
J. of Research of the NBS (1982)

� For arbitrary positive weights fwigki=1,
weighted mean is

~� =

Pp
i=1wi�xi:Pp
i=1wi

:

� Mandel-Paule estimate, �MP, of � is the
weighted mean ~� for which

wi �
1

~�2+ t2i

where ~�2 is the root (if any) of

Q =
pX

i=1

wi(�xi: � ~�)2 = p� 1

� Note: Q is convex decreasing on [0;1),
and Q � �2p�1 if

wi = !i �
1

�2+ �2i



The Mandel-Paule Algorithm and

ML/REML

Maximum-Likelihood for a linear model

Y = X�+ e;

where e � N(0;�) is equivalent to minimizing

of j�j, subject to
(y �X�̂)T��1(y �X�̂) = n (1)

where �̂ is the GLS estimate of �, and n is the

number of observations.

For our one-way model, if the �2i are replaced

by s2i , then (1), an equation in �2 alone, is

pX
i=1

wi(�xi: � ~�)2 = p:

Had REML been used, rather than ML, then

the p on the RHS above would be a p � 1,

precisely Mandel and Paule's equation.



A Problem With a Long History:

Cochran's Publications on Combining

Experiments

� (1937), \Problems Arising in the Analysis of a Se-
ries of Similar Experiments".

� (1938), \The Analysis of Groups of Experiments",
(with F. Yates).

� (1954), \The Combination of Estimates From Dif-
ferent Experiments".

� (1980), \Summarizing the Results of a Series of
Experiments".

� (1981), \Estimators for the One-Way Random Ef-
fects Model With Unequal Error Variances", (et.
al., posthumous).



Maximum Likelihood

(Cochran, 1937)

Let !i = 1=(�2+�2i ), �i = ni�1, and determine

�̂, �̂2i , and �̂ to satisfy

(Ai) !i � !2i (�xi: � �)2+ �i

�
1
�2i
� t2i

�4i

�
= 0

(B)
Pk
i=1 !

2
i (�xi: � �)2 =

Pk
i=1 !i

(C) �=
Pk
i=1 !i�xi:Pk
i=1!i

Note that (B) may have multiple roots. Cochran

(1937) proposed setting �2i = t2i and solving

(B) for �2, then using (C).



The Loglikelihood Function:

A Better Parametrization

De�ne weights by

i �
�2

�2+ �2i

The loglikelihood becomes

2` =
pX

i=1

ni log

�
i
�2

�

�
pX

i=1

i
�2

"
(xi � �)2+

�it
2
i

1� i

#

�
pX

i=1

�i log(1� i) +K:

Di�erentiate this with respect to parameters

�; �2 and i; i= 1; : : : ; p:



ML Equations

� =

Pp
i=1 i�xi:P

i i
=

Pp
i=1 !i�xi:P

i !i

�2 =

Pp
i=1 i

�
(�xi: � �)2+

�it
2
i

1�i

�
Pp
i=1 ni

3i � (ai+2)2i +

[(ni+1)ai+ (ni � 1)bi+1] i

�niai = 0

where

ai �
�2

(�xi: � �)2

and

bi �
t2i

(�xi: � �)2
:



Result #1:

Monotone Convergence to Stationary

Points of the Likelihood

� For any starting values �0, �
2
0, maximize

the likelihood over the weights by solving

the cubics. (If there are multiple real roots,

choose the one which causes the biggest

increase in the likelihood.)

� Let

�21 =

Pp
i=1 i

�
(�xi: � �)2+

�it
2
i

1�i

�
Pp
i=1 ni

�1 =

Pp
i=1 i�xi:Pp
i=1 i

solve for new weights, and iterate.

� This iteration, regardless of starting values,

always converges to a stationary point of

the likelihood, and increases the likelihood

at each step.



Result #2:

Location of Stationary Values of the

Likelihood

� At a stationary point of the likelihood,

�̂2 =

Pp
i=1 

2
i (�xi: � �)2Pp
i=1 i

hence

� All of the stationary points of the likeli-

hood �̂ and �̂ are within the rectangle in

the (�; �) plane given by

min
i
(�xi:) � ~� � max

i
(�xi:)

and

0 � ~� � max
i
(�xi:)�min

i
(�xi:):

� After the appropriate location-scale trans-

formation of the data, it is only necessary

to search the unit square in the (�; �) plane
for stationary values.



Lab. 6 an Outlier for Apricot Data



Outlier Labs. for Cabbage Data



Four Local Maxima for Fibrim Likelihood



Result #3:

Location of the Roots of Cubic

Equations for Weights (i)

� Each cubic likelihood equation has one or

three roots i 2 [0;1].

� A necessary condition for three roots is

that

(�xi: � �)2 � max(�2=qi; t
2
i =hi);

where

qi = �2� 6
p
ni sin

�
1

3

�
sin�1

�r
ni � 1

ni

�
� �

2

��

=
8

27ni

+O(n�2i )

and

hi =
(1� qi)3

27(ni � 1)
=

1

27ni

+O(n�2i ):

� These values qi and hi are the smallest for

which this is necessary.



A Comment on Homoscedastic Models

� If we require that the `within' variances
be equal, than we still have the likelihood
equations

� =

Pp
i=1 i�xi:P

i i

�2 =

Pp
i=1 i

h
(xi � �)2+

�it
2

i

1�i

i
Pp

i=1 ni

� The weights can be parametrized as

i =
u

u+ (1� u)n1

ni

;

for 0 � u < 1. Maximizing the likelihood

reduces to maximizing with respect to u.

In particular, all of the stationary points

of the likelihood must be on a curve in

the (�; �) plane, and one need not be con-

cerned about negative solutions for the vari-

ances.



Hierarchical Model With

Noninformative Priors

i = 1; : : : ; p indexes laboratories

j = 1; : : : ; ni indexes measurements

p(xijj�i; �2i ) = N(�i; �
2
i )

p(�i) / 1=�i

p(�ij�; �2) = N(�; �2)

p(�) / 1

p(�) / 1



Posterior given � = 0, p � 1

Given � = 0, then the posterior distribution

of the consensus mean � is proportional to a

product of scaled t-densities:

p(�jfxijgj� = 0) /
pY

i=1

1

ti
T 0ni�1

 
�xi: � �

ti

!



The General Case: � � 0

In general, p(�j�; fxijg) is proportional to a prod-
uct of the distributions of the random variables

Ui = �xi:+

p
ni

si
Tni�1+ �Z;

where Tni�1 is a t-distributed random variable

with ni�1 degrees of freedom, Z is distributed

N (0;1), and Tni�1 and Z are independent.



A Useful Probability Density

Let T� and Z denote independent Student-t

and standard normal random variables, and as-

sume that  � 0 and � > 0. Then

U = T� + Z

s
 

2

has density

f� (u; ) � 1

��=2
p
�

Z 1
0

y(�+1)=2�1e
�y
h
1+ u2

 y+�

i
p
 y+ �

dy:



Posterior of (�; �)

� Assume �i � N(�; �2), � � p(�),

p(�) / 1, p(�i) / 1=�i.

� Then the posterior of (�; �) is

p(�; �jfxijg) / p(�)
pY

i=1

1

ti
fni�1

"
�xi: � �

ti
;
2�2

t2i

#
:

� The posterior of � given � = 0 is a prod-

uct of scaled t-densities centered at the xi,

since

1

ti
fni�1

"
�xi: � �

ti
; 0

#
=

1

ti
T 0ni�1

 
�xi: � �

ti

!
:

� We will take p(�) = 1, though an arbitrary

proper prior does not introduce additional

di�culties.



Marginals for � and �:

Arsenic Data



Marginal Posterior: Apple Fiber Data



Small Simulation Comparing

Bayesian and Frequentist Intervals

� = 0

�i = �e

�2+ �2e = 1

� = �2=(�2e + �2) = 1=2



A Two-Way Mixed Model

(Heteroscedastic, no Interaction)

xijk = �k + �i+ eijk;

� i= 1; : : : ; p Laboratories

� j = 1; : : : ; ni Replicates

� k = 1; : : : ;m Materials

�i � N(0; �2)

eijk � N(0; �2i )

Some notation: �2i � �2i =(nim), �i � nim� 1.



ML Equations

�k � �� � �k =

Pp
i=1(�xi�k � �xi��)=�2iPp

i=1 1=�
2
i

�� =

Pp
i=1 i�xi��Pp
i=1 i

�2 =

Pp
i=1 i

�
(�xi�� � ��)2+

�it
2
i

1�i

�
Pp
i=1 ni

Where �2i � �2i =(nim), �i � mni � 1,

i � �2=(�2+ �2i ), and

t2i �
P
j;k(xijk � �xi�k)2+ ni

P
k(�xi�k � �xi�� � �k)

2

�inim



ML Equations (Cont'd)

The weights figpi=1 are roots of the cubic

equations

3i � (ai+2)2i +

[(nim+1)ai+ �ibi+1] i �
niai = 0

where

ai �
�2

(�xi�� � ��)2

and

bi �
t2i

(�xi�� � ��)2
:



An ML Iteration

1. Begin with estimates

�

(s)
i

�
.

2. Calculate the following:

�
(s+1)
k =

Pp
i=1(�xi�k��xi��)=�

2(s)
iPp

i=1 1=�
2(s)
i

��(s+1) =

Pp
i=1 

(s)
i �xi��Pp

i=1 
(s)
i

�2
(s+1)

=

Pp
i=1 

(s)
i

"
(�xi�����)2+

�it
2
i

1�
(s)
i

#
Pp
i=1 ni

3. Note that if the �k are constrained to sat-

isfy the above ML equation, then

t2i =

P
j;k(xijk � �xi��)2 �

P
k �

2
k=m

ni�im

4. Solve the cubics for new estimates 
(s+1)
i ,

and iterate.



Some Theoretical Results for Two-Way

Mixed Model

The one-way results discussed earlier general-

ize:

� Monotone convergence

� All stationary values of likelihood in box in

(�; �;
P
k �

2
k) space.

� Exactly one weight i 2 [0;1], unless ith

lab an outlier and ni small

� Variances cannot be negative at solution

to likelihood equation.



Hierarchical Model With Noninformative

Priors: Two-Way Model

i = 1; : : : ; p indexes laboratories

j = 1; : : : ; ni indexes measurements

k = 1; : : : ;m indexes materials

p(xijkj�i; �k; �2i ) = N(�i+ �k; �
2
i )

p(�i) / 1=�i

p(�ij�; �2) = N(�; �2)

p(�k) / 1

p(�) / 1



Posterior of (�; �):

Two-Way Model

� The posterior of (f�kg; �) is

p(f�kg; �jfxijkg) / p(�)
pY

i=1

1

ti
f�i

"
�xi�� � ��

ti
;
2�2

t2i

#
:

where f�(�; �) is the generalized t-distribution
de�ned earlier, and

t2i �
P
j;k(xijk � �xi�k)2+ ni

P
k(�xi�k � �xi�� � �k)

2

�inim



Summary

� Interlaboratory studies are important in many �elds.

� W.J. Youden and John Mandel of the National Bu-
reau of Standards have left an important mark on
the simple methods in common use today, through
the Youden plot, the Row-Linear Model, and other
ideas.

� But there remains considerable opportunity for new
methodology, more realistic and computationally in-
tensive.

� The new results presented here include
{ Relating an ad-hoc procedure due to Mandel

and Paule to REML
{ New results for the one-way heteroscedastic model,

including a way to �nd all statationary points
of the likelihood, and to easily calculate pro�le
likelihoods.

{ A Bayesian hierarchical model leads to approx-
imate con�dence regions, and promises to be
useful, with an informative prior on �, when the
number of labs. is small.


